Home   About the Journal   Instructions to Contributors   中文界面
  Revised:August 15, 2019
KeyWords:south China spring rainfall  warm pool ocean heat content  interdecadal change
Author NameAffiliationE-mail
WANG Xiao-fang 1. Zhongshan Meteorological Service, Zhongshan 528401 China
2. Guangdong Meteorological Service, Guangzhou 510080 China
3. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044 China 
CHANG Yue  changy@gz121.com 
ZHU Zhi-wei   
Hits: 201
Download times: 2
      South China spring rainfall (SCSR) is a unique feature during the seasonal transition from the winter half-year to summer half-year. Abnormal SCSR has great impacts on crop harvests. Seeking previous predictability sources, particularly persistent precursors, is of practical importance in the seasonal prediction of SCSR. The present study investigates the relationship between SCSR and preceding-summer warm pool ocean heat content (WPHC). The SCSR-WPHC relationship is not stationary and has a remarkable interdecadal change around 1983. Before 1983, SCSR and preceding-summer WPHC have a close relationship, with a temporal correlation coefficient (TCC) of ?0.54. After 1983, the relationship disappears, with a TCC of ?0.18. It is further found that the WPHC-associated sea surface temperature anomaly (SSTA) pattern in the simultaneous spring during the two periods presents dissimilar evolutionary features. Before 1983, a La Ni?a-like SSTA presents a fast transition during the winter and alters to a developing El Ni?o during the following spring. The warm SSTA is confined to a limited region over the eastern Pacific. Therefore, the rainfall and circulation responses over the equatorial Maritime Continent are relatively weak. In turn, the Rossby wave response in terms of the cyclonic anomaly to the Maritime Continent diabatic heating is weak and confined to the South China Sea and Philippine Sea, which leads to high pressure and suppressed rainfall over south China, establishing an intimate SCSR–WPHC relationship. However, after 1983, because the La Ni?a-like SSTA pattern can persist for more than a year, the rainfall diabatic heating over the Maritime Continent during springtime is enhanced, resulting in a much larger cyclonic response over East Asia but insignificant rainfall anomalies over south China. Therefore, the SCSR–WPHC relationship becomes weak. Wavelet analysis suggests that the change in the dominant period of WPHC variation is probably responsible for the different SSTA evolutions and corresponding atmospheric responses.
View Full Text  View/Add Comment  Download reader
      Copyright:Journal of Tropical Meteorology Editorial Office
Address:312 Dongguanzhuang Road Guangzhou   Postcode:510641   Tel:020-39456441   Email:yueq@gd121.cn
Technical support: Beijing E-Tiller Co.,Ltd.